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In silico predictions of 3D structures of
linear and cyclic peptides with natural
and non-proteinogenic residues
Jérôme Beaufays, Laurence Lins,* Annick Thomas and Robert Brasseur
We extended the use of Peplook, an in silico procedure for the prediction of three-dimensional (3D) models of linear peptides
to the prediction of 3D models of cyclic peptides and thanks to the ab initio calculation procedure, to the calculation of pep-
tides with non-proteinogenic amino acids. Indeed, such peptides cannot be predicted by homology or threading. We compare
the calculated models with NMR and X-ray models and for the cyclic peptides, with models predicted by other in silico proce-
dures (Pep-Fold and I-Tasser). For cyclic peptides, on a set of 38 peptides, average root mean square deviation of backbone
atoms (BB-RMSD) was 3.8 and 4.1Å for Peplook and Pep-Fold, respectively. The best results are obtained with I-Tasser
(2.5 Å) although evaluations were biased by the fact that the resolved Protein Data Bank models could be used as template
by the server. Peplook and Pep-Fold give similar results, better for short (up to 20 residues) than for longer peptides. For pep-
tides with non-proteinogenic residues, performances of Peplook are sound with an average BB-RMSD of 3.6Å for ‘non-natural
peptides’ and 3.4 Å for peptides combining non-proteinogenic residues and cyclic structure. These results open interesting
possibilities for the design of peptidic drugs. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

Determination of protein and peptide structures is an important
field to understand their functions. Physicochemical approaches
such as X-ray crystallography or NMR spectroscopy are used to
determine three-dimensional (3D) structures. However, these
techniques show some limits because of long time processing
and/or important costs. In the meantime, computational meth-
ods have been developed to calculate 3D models from
sequences. They can be classified into three main categories:
homology [1–3], threading [4–6], and ab initio [7–9].

In the first category, the structure is calculated based on a
resolved structure from the Protein Data Bank (PDB) whose
sequence is homologous to the target sequence. Threading is
based on the limited number of protein folds with respect to
the huge possibilities of sequences. This method tries to identify
which resolved proteins will share its fold with the target
sequence. The ab initio method does not require a template to
build models. It is only based on physicochemical principles
and aims to predict folds of lower free energy.

For the prediction of peptide structures, few servers exist such
as Pep-Fold [10,11], Pepstr [12], Protinfo [13,14], Hmmstr/Rosetta
[15,16], I-Tasser [17,18]. . .

Recently, our laboratory developed Peplook [19], an ab initio
method. Peplook is an iterative Boltzmann-Stochastic algorithm
to predict 3D models from sequences up to 30 residues. The pro-
gram uses Φ/Ψ angles derived from the structural alphabet of
Etchebest [20]. It generates series of random peptide conforma-
tions and selects the lowest energy model.

In this paper, we present two new applications of Peplook. In
the first application, we show that distance restraints can be used
to enable the prediction of cyclic peptide structures. Calculated
24
Peplook models were compared with experimental data and with
models obtained by two other structure prediction servers, Pep-
Fold [10,11] and I-Tasser [17,18].

Pep-Fold uses a hidden Markov model-derived structural
alphabet of 27 motifs composed of 4 residues. It first determines
structural alphabet letters of the sequence and then builds
model by assembling the fragments using a greedy algorithm
driven by a coarse-grained force field. Pep-Fold can be used for
peptides of 9–25 amino acids. I-Tasser combines threading and
ab initio methods. The sequence is first threaded through a PDB
structure library. Fragments are then assembled to build a global
structure and unaligned regions are generated by an ab initio
approach.

In the second application, Peplook is used to predict 3D models
of peptides containing non-proteinogenic amino acids such as the
posttranslationally modified (phosphorylated, sulfated, hydroxyl-
ated and carboxylated) amino acids, D-amino acids, natural amino
acids of non ribosomal peptides and non-natural synthetic amino
acids. To our knowledge, this is the first description of an ab initio
method able to predict structure of ‘non-natural peptides’.
Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
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Materials and Methods

Peplook

Peplook is an iterative Boltzmann-Stochastic algorithm described
elsewhere [19]. Briefly, from a sequence, Peplook generates 100–
500 times 104 structures using Φ/Ψ couples randomly selected
among 64 couples derived from the structural alphabet for pro-
tein structures proposed by Etchebest et al. [20]. In this paper,
they described the alphabet as being composed of 16 ‘protein
blocks’ of five residues in length. Consequently, each ‘protein
block’ can be defined as a succession of four Φ/Ψ couples. The
64 couples of angles are indicated in the Table S1. In the next
steps, the probability of each combination of Φ/Ψ couples of
angles is increased or decreased if they generate energetically
favorable or unfavorable structures, respectively. Step after step,
the probability ofΦ/Ψ value for each residue varies. When themean
probability of peptideΦ/Ψ couples of angles remains constant, the
process is stopped, and 99 structures of lower energy are selected.
For the cyclic peptides, energy gaps are added to force mini-

mal distances: 2.2 Å between the SG of the cysteines implicated
Figure 1. Examples of Peplook models. NMR/X-ray structures are in blue an

Copyright © 2011 European Pwileyonlinelibrary.com/journal/jpepsci
in the disulfide bonds and 1.3 Å between the N and the C of
amino acids implicated in amide bonds.

For peptides with non-proteinogenic residues, initially, struc-
tures of these residues were constructed using HYPERCHEM 5.0
(Hypercube, Gainesville, FL, USA), starting from the backbone of
alanine and optimized by the Polak-Ribiere algorithm using the
AMBER-95 force field with a gradient d inferior to 0.1 kcal/(Åmol),
as previously described [21]. Non-proteinogenic amino acids
were then added to the set of the 20 natural residues used in
Peplook, and calculation of 3D models was run as previously
described for peptides consisting of proteinogenic amino acids.
I-Tasser

In the initial step, I-Tasser [17,18] uses Lomets [22], a meta-
threading approach to identify templates for the query sequence
in a non-redundant PDB structure library. Then, fragments excised
from the consensus threading templates are assembled by modi-
fied replica-exchange Monte-Carlo simulations into 3D models.
Models are clustered using Spicker [23]. The cluster centroids are
d Peplook models in red. Pictures were generated using Pymol software.

J. Pept. Sci. 2012; 18: 17–24eptide Society and John Wiley & Sons, Ltd.
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subjected to a second iteration process in order to remove
clashes and to refine global topology. The final all-atom models
are generated by Remo through optimization of hydrogen bonding
networks [24]. To evaluate predicted models, a C-score is defined
based on the quality of the threading alignments and the conver-
gence of parameters of the structure assembly simulations. Web
address: http://zhanglab.ccmb.med.umich.edu/I-TASSER/

Pep-Fold

Pep-Fold uses hidden Markov model-derived structural alphabet
of 27 motifs to describe the conformations of four consecutive
residues [10,11]. It first determines structural alphabet letters of
the sequence and then builds 3D models by assembling the frag-
ments using a greedy algorithm driven by a coarse-grained force
field. For each target sequence, 50 greedy simulations are per-
formed and the 50 models are clustered. The all-atom models
are then generated followed by a fast minimization performed
with Gromacs [25]. As distance restraint cannot be applied with
Pep-Fold, the procedure used for cyclic peptide structure deter-
mination was the same as for linear peptides. Web address:
http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD/
Results

Structure Prediction of Cyclic Peptides

We tested the performance of Peplook to predict structure of
cyclic peptides. A set of 38 sequences of PDB models was used
for this study, with lengths varying from 5 to 30 residues. Most
of the 3D models were solved by NMR, only two were obtained
by X-ray crystallography. Cyclization of these peptides occurs ei-
ther by a disulfide bond or by an amide bond between the amino
and carboxyl groups of side chains or backbones.

Peplook, Pep-Fold, and I-Tasser were used to generate the mod-
els. To cyclize the peptides, distance restraints, corresponding to
the lengths of disulfide bridge and amide bond, were applied in
Peplook and I-Tasser. Figure 1 shows some examples of predicted
models fitted on the corresponding NMR or X-ray models. To
evaluate the accuracy of predictions, we calculated the root
mean square deviation of backbone atoms (BB-RMSD) between
predicted and experimental models. Table 1 reports the BB-RMSD
of the Prime (Peplook) and First model (I-Tasser) (corresponding
to the lowest energy conformation in each procedure) and the
BB-RMSD of the best model (corresponding to the model with
the lowest BB-RMSD in each procedure). We have to note that
some PDB models are partially flexible, notably at the N- and
C- ends, as usually observed for NMR models. For them, RMSD
from the average structure was actually calculated on the struc-
turally monomorphic part (‘rigid core’) of the peptide. Conse-
quently, the BB-RMSDs calculated in our study are also based
on the same part of the peptide. These peptides are indicated
in italic followed by an asterisk in Table 1.

For the Peplook Primes, the overall average BB-RMSD of the 38
models is 3.8Å. Interestingly, the score is very close to that of the
best models (3.6Å). This is comparable with the score of Pep-Fold
models (4.1 Å for the first and 3.4Å for the best). BB-RMSD for mod-
els predicted by I-Tasser are lower (2.5 and 2.2Å for the first and the
best models, respectively). It should be noted that the use of
Pep-Fold is restricted to peptides of 9–25 amino acids and that of
I-Tasser, to peptides of at least 10 residues, so that only 29 of the
38 models were calculated with Pep-Fold and 35 with I-Tasser.
J. Pept. Sci. 2012; 18: 17–24eptide Society and John Wiley & Sons, Ltd.



Figure 2. RMSD-sequence length relationship for Peplook, I-Tasser, and Pep-Fold models.

3D STRUCTURE PEPTIDE PREDICTION
We also analyzed the performance of Peplook as a function of
peptide length. Figure 2 shows that BB-RMSD values increase for
peptides of more than 20 amino acids. Models of peptides with
5–20 residues have a BB-RMSD lower than 4 Å (Figure 3), with
individual values between 1Å (1IM1) and 3.7 Å (1HJE). The aver-
age BB-RMSD is 2.9 Å for the Primes and 2.8 Å for the best models
for the 10–20 amino acids peptides. These results are similar to
those obtained with structures predicted with I-Tasser (2.8 Å BB-
RMSD for the first and 2.4 Å BB-RMSD) and with Pep-Fold (3.4 Å
BB-RMSD for the first and 3.0 Å BB-RMSD).

For peptides of 21–30 amino acids, models predicted with
Peplook have BB-RMSD values between 2.4 Å (2AJW) and 7.4 Å
(2NX7) (Figure 3). The mean BB-RMSDs for the 16 longer peptides
are 5.3 Å (first models) and 4.9 Å (best models). These values are
comparable with the Pep-Fold predictions (5.5 and 4.1 Å for the
first and for the best models, respectively). In contrast, averaged
BB-RMSD of the I-Tasser models is close to 2 Å irrespective of
the size of peptides (2.2 Å for the first models and 2.1 Å for the
best models for longer peptides).
Figure 3. RMSD distribution for 10–20 and 21–30 amino acid peptides mod

J. Pept. Sci. 2012; 18: 17–24 Copyright © 2011 European Peptide Society a
In a general manner, the BB-RMSD of cyclic peptides is lower than
linear ones (data not shown). To evaluate more accurately the mod-
els, Cb-RMSD was therefore calculated (Table 1). The results with
Cb-RMSD are similar to those obtained with BB-RMSD, whereas
the Cb-RMSD values being slightly higher. The overall average
Cb-RMSD of Peplook models is comparable with the score of
structures predicted with Pep-Fold. The value for the 38 Peplook
models is 4.8 Å (Prime) and 4.5Å (best) and 4.9Å (first) and 4.4 Å
(best) for the Pep-Fold models. Cb-RMSD of I-Tasser predicted
structures is also lower (3.1 Å for the first and 2.9 Å for the best).
Structure Prediction of ‘Non-Natural Peptides’

Thirteen ‘non-natural peptides’ were chosen with length varying
from 9 to 27 amino acids. What we name here ‘non-natural peptides’
are peptides with natural, but non-proteinogenic amino acids and
with non-natural amino acids. Some examples of predicted models
fitted to NMR structures are shown in Figure 1.
els.

nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci
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Table 2. List of ‘non-natural peptides’ used in this study

PDB Length RMSD_P RMSD_B Sequence NPAA

2RLL 9 2.8 2.6 SPI TYS DIN TYS Y TYS: O-sulfo-L-tyrosine

2JQC 15 2.4 2.1 DWEYHAHPK HYP NSFWT HYP: hydroxyproline

1ONU 17 2.0 1.7 GE CGU CGU LQ CGU NQ CGU LIR CGU KSN CGU: gamma-carboxyglutamic acid

1V50 17 2.6 2.1 KISSPTE TPO ERCIESLIA TPO: phosphothreonine

2CEZ 19 4.4 3.4 CRKAGVGQ PSE WKENSPLNVS PSE: phosphoserine

2CEF 19 4.3 3.9 CRKAGVGQ PSE WKEN PSE PLNVS SEP: phosphoserine

1VQX 19 4.5 4.1 DDEA SEP TPO TPO V SEP K TPO E TPO SEP QVAPA SEP: phosphoserine, TPO: phosphothreonine

2AP8 20 1.4 1.3 I DIL GPVLGLVGSALGGLLKKI DIL: D-isoleucine

1GEA 21 4.2 3.4 HSDGIFTDSYSRYRKQMAVK LYN LYN: 2,6-diamino-hexanoic acid amide

1ONT 21 3.3 2.9 GE CGU CGU YQKML CGU NLR CGU AEVKKNA CGU: gamma-carboxyglutamic acid

1T8J 23 5.3 4.6 YRV DPR SYDFSRSDELAKLLRQHAG DPR: D-proline

1HCW 24 4.8 4.7 YTVPS PYA TFSRSDELAKLLRLHAG PYA: 3-(1,10-phenanthrol-2-yl)-L-alanine

2G57 27 5.0 4.0 KAAVSHWQQQSYLD SEP GIH SEP GATTTAP SEP: phosphoserine

Mean 9-30 AA 3.6 3.1

9-20AA 3.0 2.6

21-27AA 4.5 3.9

NPAA, nature of the non-proteogenic amino acid.
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The averaged BB-RMSD of the Primes and the best models
with respect to the NMR models are 3.6 and 3.1 Å, respectively
(Table 2). These RMSD values vary from 1.4 to 5.3 Å for the primes
and from 1.3 to 4.7 Å for the best models. As observed for the
cyclic peptides, the BB-RMSD increases with the peptide length
but the increase is less important: the averaged RMSDs are 3.0Å
(Prime) and 2.6Å (Best) for the 9–20 amino acids peptides and 4.5Å
(Prime) and 3.9Å (Best) for the 21–27 amino acids peptides (Table 2).
Because no available software is dedicated to the prediction of

‘non-natural peptides’, we had no other prediction for comparison.
Nevertheless, we compared predictions for natural and ‘non-
natural peptides’ to assess the potentiality of Peplook (Table 3).
We used three ‘non-natural peptides’ (1 V50, 2CEF, and 2AP8),
which had a related natural peptide experimentally solved. For
these three examples, the BB-RMSDs with respect to the experi-
mental models are similar for the natural and ‘non-natural peptides’.
Structure Prediction of Cyclic Peptides with
Non-Proteinogenic Residues

We also tested Peplook with peptides that have both non-
proteinogenic amino acids and a cyclic structure. We selected 14
PDB sequences for this study. Two of these peptides were cyclized
through an amide bond (1JAR and 1T9E) and the others by a disul-
fide bond. Figure 1 shows fitted Peplook models on the NMR
structures. The overall averaged BB-RMSD is 3.4 Å for the Prime
Table 3. Comparison of PepLook performance between natural and non-

PDB RMSD_P RMSD_B

1V4Z 2.3 1.6 KIS

1V50 2.6 2.1 KIS

2CEH 4.7 3.0 CRK

2CEZ 4.4 3.4 CRK

2CEF 4.3 3.9 CRK

2AP7 1.5 1.2 IIGP

2AP8 1.4 1.3 I D

NPAA: see Table 2.

Copyright © 2011 European Pwileyonlinelibrary.com/journal/jpepsci
models and is 3.2 Å for the best models (Table 4). Although our
analysis carries on a limited number of peptides, we observed
that BB-RMSDs are lower for the shorter peptides.

For four peptides (1JAR, 2FR9, 1T9E, 1ZWU), 3D models of the
homologous natural peptides were solved, and we compared
their conformations with those of Peplook models for the natural
and the ‘non-natural peptides’ (Table 5). In addition, for two of
them (1JAR, 2FR9), 3D structures of two ‘non-natural peptides’
were determined because the non-proteinogenic amino acids is
located at two different positions. BB-RMSDs of ‘non-natural pep-
tides’ are similar to those of the natural peptides, as already ob-
served for the non-cyclic peptides. Furthermore, the same values
are observed when ‘non-natural models’ are available. As an exam-
ple, 2FRB and 2FR9 with a p-(benzoyl)-phenylalanine instead of
Asn4 (2FRB) or Ser12 (2FR9) were compared with 1NOT, the re-
lated natural peptide. The BB-RMSDs are 2.4, 2.4, and 2.7 Å for
the Primes of 1NOT, 2FRB, and 2FR9, respectively, and 2.4, 2.4,
and 2.3 Å for the best models, respectively.
Discussion

Peplook is an iterative Boltzmann-Stochastic algorithm to predict
3D models of peptide sequences up to 30 amino acids. In this
paper, we show that Peplook can also be used for cyclic and
‘non-natural peptides’. BB-RMSD values were used to evaluate the
natural homologous peptides

Sequence NPAA

SPTETERCIESLIA

SPTE TPO ERCIESLIA TPO: phosphothreonine

AGVGQSWKENSPLNVS

AGVGQ PSE WKENSPLNVS PSE: phosphoserine

AGVGQ PSE WKEN PSE PLNVS PSE: phosphoserine

VLGLVGSALGGLLKKI

IL GPVLGLVGSALGGLLKKI DIL: D-isoleucine
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Table 4. List of non-natural cyclic peptides used in this study

PDB length RMSD_P RMSD_B Sequence NPAA

1YL8 8 2.7 1.4 DPN CY DTR KTCT DPN: D-phenylalanine, DTR: D-tryptophan

1NXN 9 1.9 1.9 GDCP DTR KPWC DTR: D-tryptophan

1HD9 11 2.4 2.4 NOL CTASIPPQCY NOL: norleucine

1XY6 12 2.5 2.5 YCKFE DTR IAM TFKSC DTR: D-tryptophan, IAM:

4-[(isopropylamino)methyl]phenylalanine

1JAR 13 2.6* 2.6* IWGDSGKLI DAB TTA DAB: 2,4-diaminobutyric acid

1J9V 13 2.4* 2.4* IWG DAB SGKLIDTTA DAB: 2,4-diaminobutyric acid

2FRB 13 2.4 2.4 ECC PBF PACGRHYSC PBF: p-(benzoyl)-phenylalanine

2FR9 13 2.7 2.3 ECCNPACGRHY PBF C PBF: p-(benzoyl)-phenylalanine

1XBH 13 3.2 3.2 CIYYKDGEALKY DCY DCY: D-cysteine

1T9E 14 4.8 4.8 GR ABA TKSIPPI ABA FPD ABA: alpha-aminobutyric acid

1MTQ 19 3.8 3.8 IRD CGU CCSNPACRVNN HYP HVC CGU: gamma-carboxyglutamic acid, HYP:

hydroxyproline

1TCG 22 3.7 3.5 RDCCT HYP HYP KKCKDRQCK HYP QRCCA HYP: hydroxyproline

2JUY 28 6.7 6.0 FFCPFGCALVDCGPNRPCRDTGF SME SCDC SME: methionine sulfoxide

1ZWU 30 6.4 5.1 VGECVRGRCPSGMCCSQ NAL GYCGKGPKYCGR NAL: beta-(2-naphthyl)-alanine

Mean 3.4 3.2

NPAA: see Table 2.

3D STRUCTURE PEPTIDE PREDICTION
calculated models with respect to their experimental NMR or X-ray
counterparts. In addition, for cyclic peptides, Peplook models were
compared with those obtained with two other prediction servers:
I-Tasser and Pep-Fold. For the ensemble of peptides, the BB-RMSDs
of Peplook models are similar to the values obtained with Pep-Fold
models but are higher than those of I-Tasser models. However, all
target sequences that we tested in this study come from the PDB.
As I-Tasser uses a PDB library to thread the sequence, in many
cases, it used the template model to build the model, an artifact
that could not be prevented.

Results show that Peplook is very reliable for peptides of 5–20
residues. For the 19 structures of that series, BB-RMSDs never exceed
4Å (values are between 2 and 3.7Å) with an average of 2.9Å. How-
ever, for longer peptides, the results are less convincing. Indeed, BB-
RMSD values are higher, especially for the 26–30 residues peptides
with an average BB-RMSD of 5.3Å. Although Peplook can predict
structure of ‘linear’ peptide up to 30 residues, for cyclic peptides,
its optimal performances are restricted to sequences up to 20–25
amino acids. In addition, some of the tested peptides have a proline
in a cis conformation (e.g. 1IXU, 1ORX, 1JBL, 2OQ9). Because Pep-
look is able to predict structure of peptides containing cis-proline,
Table 5. Comparison of Peplook performance between natural and non-n

PDB RMSD_P RMSD_B

1NOT 2.4 2.4 ECCNPACGRHYSC

2FRB 2.4 2.4 ECC PBF PACGRH

2FR9 2.7 2.3 ECCNPACGRHY P

1IM7 2.3 2.3 IWGCSGKLICTTA

1J9V 2.4 2.4 IWG DAB SGKLID

1JAR 2.6 2.6 IWGDSGKLI DAB

1JBL 3.2 3.2 GRCTKSIPPICFPD

1T9E 4.8 4.8 GR ABA TKSIPPI

1MMC 6.0 5.3 VGECVRGRCPSGM

1ZWU 6.4 5.1 VGECVRGRCPSGM

NPAA: see Table 2.
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we compared the results obtained with both proline conforma-
tions, and we noted that BB-RMSDs are similar.

We also presented another original option of Peplook: its
capacity to predict 3D structure of peptides with non-proteinogenic
residues.We showed that performances of Peplook are not affected
by the presence of these residues. Indeed, results were similar for
peptides with or free of non-proteinogenic amino acids. It should
be noted that Peplook uses non-proteinogenic residues that differ
from the natural ones only by their side chains, meaning that back-
bones of the non-proteinogenic residues are the same as those of
the 20 linear natural amino acids. BB-RMSD values of peptides with
non-proteinogenic amino acids are between 1.4 and 5.3Å with an
average of 3.6 Å. As observed for cyclic peptides, the BB-RMSDs
increase with peptide lengths, but the difference is smaller than
for the cyclic structures (3.0Å for 10–20 amino acid peptides and
4.5 Å for 21–27 amino acid peptides) supporting the conclusion
that Peplook is an interesting procedure to predict 3D structures
of ‘non-natural peptides’ up to 30 amino acids.

In the same manner, we showed that Peplook can be used to
predict structure of peptides that combine a cyclic structure
and non-proteinogenic amino acids. Results are similar to those
atural homologous cyclic peptides

Sequence NPAA

YSC PBF: p-(benzoyl)-phenylalanine

BF C PBF: p-(benzoyl)-phenylalanine

TTA DAB: 2,4-diaminobutyric acid

TTA DAB: 2,4-diaminobutyric acid

ABA FPD ABA: alpha-aminobutyric acid

CCSQFGYCGKGPKYCGR

CCSQ NAL GYCGKGPKYCGR NAL: beta-(2-naphthyl)-alanine

nd John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci
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obtained for the cyclic and the ‘non-natural peptide’ predictions
with an averaged BB-RMSD of 3.4 Å.
In conclusion, we have shown that Peplook is suitable to predict

3D conformation of 1–25 residues long cyclic peptides and contain-
ing non-proteinogenic residues. For cyclic peptides, Peplook is as
potent as other in silico methods, such as Pep-Fold or I-Tasser,
when the peptide length is less than 25 residues. For longer pep-
tides, up to 30 amino acids, I-Tasser performs better than the two
other methods, but it introduces a bias because of the potential
use of the query structure as template. The improvement of Pep-
look to reach better prediction for longer peptides, natural, cyclic,
or non-natural, is currently under investigation.
In a general way, Peplook can be used to predict the conforma-

tion as well as the lability of a peptide (linear, cyclic, and/or non-
natural) and to evaluate the influence of mutations on the
structure as already stated for natural peptides [19].
It is worth noting that Peplook is, to our knowledge, the only

method able to predict the structure of ‘non-natural peptide’. This
is notably because of its ab initio search procedure for structure; in-
deed, template models of 3D structures with non-proteinogenic
residues are not available for homology and threading protocols.
Peplook could be an interesting tool in the field of peptide

therapy. A rapid expansion in the use of peptides as drugs has
been observed in the last few years. However, development of
peptides as therapeutic drugs is limited by their weak metabolic
stability and low bioavailability. A solution to overcome these
problems could be to use modified peptides including non-
proteinogenic residues and/or cyclic peptides.
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